FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

平面ベクトル

平面ベクトル

 幾何学の問題を計算処理的アプローチで解決するための道具として、ベクトルを学びます。ベクトルの次元はいくつでも構わないのですが、まず、ベクトルの基本を学ぶために、2次元ベクトル、即ち、平面ベクトルを学びます。

ここで学習する内容は、以下の通りです。各項目をクリックしてください。

ベクトルとは ベクトルとは、AからBに向かう有向線分のことで、と表します。大きさと向きの両方を考えます。
ベクトルの1次独立 2つのベクトルが三角形ABCを作るような位置関係にあるとき、1次独立であると言います。
ベクトルの成分表示 原点Oを始点とするベクトルを位置ベクトルと言います。座標平面上で点Pの位置ベクトルを考えるとき、点Pの座標をベクトルのように扱うことができます。これをの成分表示と言います。
内積 内積は2つのベクトルの大きさと位置関係により決まる量です。のなす角をq として、
三角形の面積の公式 とするとき、△OABの面積は、
ベクトルの内分・外分 線分ABmnに内分する点Pの位置ベクトルは、mnに外分する点Qの位置ベクトルは、
直線のベクトル方程式 2ABを通る直線上の点Pを規定する式、つまり、点Aを通りに平行な直線のベクトル方程式は、tを実数として、
平面ベクトルの応用 1次独立で、stを実数として、という関係があるとき、ならPは直線AB上の点
共線条件 1次独立で、stを実数として、という関係があるとき、Pが直線AB上の点なら
円のベクトル方程式 Cを中心とし、半径rの円周上の点Pが満たす、円のベクトル方程式は、


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
スポンサーサイト



テーマ:大学受験 - ジャンル:学校・教育

  1. 2006/07/10(月) 10:59:40|
  2. 数学B
  3. | トラックバック:0
  4. | コメント:0
<<空間座標 | ホーム | 円のベクトル方程式>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/88-e72af304
この記事にトラックバックする(FC2ブログユーザー)