FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

京大理系数学'09年甲[5]

京大理系数学'09[5]

pを素数、nを正の整数とするとき、pで何回割り切れるか。

解答 例えばとして考えてみます。
には
31つ含まれているので、1回割り切れます。
の中の
3の倍数は369で、素因数分解したとき、36には31つ含まれ、9には32個含まれるので、を素因数分解すると3の指数は4になり、4回割り切れます。
の中の
3の倍数は369121518212427で、このうち、3612152124の中には31つ含まれ、素因数分解したとき、918の中には32個含まれ、27の中には33個含まれるので、を素因数分解すると3の指数はとなり、13回割り切れます。
つまり、の場合、
1からまでの数の中にpの倍数、の倍数、の倍数が何個あるかを調べて行くことになります。
のときの検討を見ると、の倍数をの倍数に含め、の倍数を
pの倍数に含めて、1から27の中に、3の倍数が個,の倍数が個,の倍数が1個あるので、として、313回割り切れる、というように考えられることがわかります。従って、本問では、以下のように解答できるでしょう。
1からの中に、 ()の倍数は、個あります。
を素因数分解したときの
pの指数は,・・・, ()の和になるので、pで割り切れる回数は、
......[]


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005,2006,2007,2008,2009
(有)りるらる
CFV21 随時入会受付中!
CFV21ご入会は、まず、
こちらまでメールをお送りください。
 雑誌「大学への数学」購入
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2009/03/23(月) 14:39:00|
  2. 京大数学'09年
  3. | トラックバック:0
  4. | コメント:0
<<京大理系甲数学'09年[6] | ホーム | 京大理系数学'09年甲[4]>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/834-2b658c6c
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。