FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

東工大数学'07年前期[3]検討

東工大数学'07前期[3]検討

[3](解答はこちら) 解答は自然な流れに沿ってやってありますが、こうした問題では、より簡潔にまとめるのにはどうするか、ということも一つのテーマになります。
東工大の場合には、問題数に比して時間はたっぷりあるので、解答方針のところに時間をかけることもできるのですが、かと言って、簡潔な答案を書くためだけのために、
130分も考えるのであれば、私は、多少手間がかかっても、自然な流れで望む方が安全だと思います。この辺は、個人の趣味の問題でもあるので、こうすべきだ、というようなことは言えませんが......。正八角形の問題なので、対称性を考えて整理すれば、自然に考えても、いくつかの類型に分けることができて、充分に試験時間内に入りきると思います。

(1)では、PQが隣接2辺にいて、Rが他の辺の上にあるとき、PQ1つおいた辺の上にいて、Rが他の辺の上にあるとき、を、考えれば十分です。Pのいる辺を固定すれば、場合分けはそれほど複雑ではありません。PQの位置に対して、Rがどこに来ると、三角形の面積が最大になるか、ほとんどの場合では容易に考えることができます。問題は、P上、Q上にあって、R上を動くときですが、PQ // かどうかで場合分けすれば解決します。
(2)では、場合分けなしで解答する方法もあるようですが、私にはオーソドックスな考え方だとは思えません。オーソドックスに行くのでは時間がかかって試験時間内に完了できない、というのならともかく、(1)のように場合分けして考えれば、多少回り道でも、三角形の面積=底辺×高さ÷2で解決します。

(1)だけでも充分ではないかと思いますが、根性さえあれば小中学生でも取り組める全員参加型の入試問題で良問だと思います。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2008/09/07(日) 14:23:38|
  2. 東工大数学'07年
  3. | トラックバック:0
  4. | コメント:0
<<東工大数学'07年前期[4]検討 | ホーム | 東工大数学'07年前期[2]検討>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/616-f7940555
この記事にトラックバックする(FC2ブログユーザー)