FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

京大物理'06年前期[3](再掲)

京大物理'06年前期[3]

次の文を読んで、  には適した式を、また{  }からは正しいものを選びその番号を、それぞれの解答欄に記入せよ。
(1) 一般に熱の出入りを伴わない状態変化を断熱変化と呼ぶが、気体の断熱変化では、変化の各段階で平衡状態が実現しているならば、という関係が成り立つ。べき定数g は気体の種類によって異なるが、必ず1より大きい値をもつ。以下では、空気に対するべき定数を、g と表す。
空気は断熱性がよいので、大気中の空気のゆっくりとした移動は、断熱変化とみなすことができる。いま、こうした断熱変化をくりかえした結果、大気の圧力や温度は、高度によって決定されているとしよう。また、空気1molあたりの質量をwとし、この値は高度によらず一定とする。このとき、地表の気温を絶対温度で(以下、温度はすべて絶対温度とする),気体定数をR,地表における空気の密度をとすれば、地表における大気の圧力は あ で与えられる。また、ある高度における大気の温度をTとするとき、その高度での大気の圧力は い ,密度は う と表される。
(2) さて、大気が上に述べたような状態にあるときに、熱気球を飛ばすことを考えてみよう。気球は断熱性の布でできており、気体の部分を除いた気球の質量はMである。最初、気球は空気は入っていない体積0 (ゼロ)の状態であった。飛ばないように気球を固定し、気球の下部が開いた状態で、外気を熱して温度にした空気を体積 え だけ詰めたところ、気球は浮かび始めた。さらに続けて、温度の空気を気球の体積がVになるまで入れた。このときの気球内の空気の物質量は お molである。また、空気の定積モル比熱をとすると、気球内に入った空気には、もとの大気の状態から か の熱が加えられ、内部エネルギーは き だけ増加したことになる。
(3) ここで、気球の下部を閉じ、固定をはずして気球を飛ばしたところ、ある高度まで上がって静止した。気球内の空気の温度と体積Vが変化しないとすると、この高度での大気の温度は く である。さらに、気球の下部を開き、体積はVのまま気球内の空気の温度を け にしたとき、気球の高度は変わらなかった。このときの気球内の空気の温度は、

解答 (1)() 地表において大気n[mol]体積の空間に存在して密度になるとすると、その質量について、

地表における大気圧として、
状態方程式 ・・・①
......[] ・・・②

() 問題文の「大気中の空気のゆっくりとした移動は、断熱変化とみなすことができる。いま、こうした断熱変化をくりかえした結果、大気の圧力温度は、高度によって決定されているとしよう。」という表現をどう考えるかですが、重力加速度が与えられていないので、(上空の気体の圧力による)(地表から上にある気体に働く重力)(地表の大気圧による)と考えることはできません。
ということは、この問題文中のヒントを、地表の気体が上空に移動して、その際、断熱変化したとして考えよ、というヒントとして考えることにします。
温度T高度における大気の圧力p,大気n[mol]体積V密度rとします。この高度での気体の状態方程式

一方①より、
問題文中に与えられている断熱変化における、という関係(ポアッソンの関係式)を用いると、


 ・・・③
②を用いて、
......[]

() ()を求めたのと同様に考えて、
 ・・・④
④÷②より、
③より、
 ・・・⑤
......[]

(2)() ④において、Rは定数ゆえ、pwが一定の場合、 ・・・() です。
気球が浮かび始めたときの気球内の密度体積だとします。このとき、気球下部が開いているので、気体の圧力大気圧です。
()より、
 ・・・⑥ (()の結果は断熱変化をしている場合、⑥は定圧変化の場合)
重力加速度gとして、気球が浮かび始めたとき、気球に働くは、上向きに働く浮力,気体の部分を除いた気球に働く重力(下向き),気球内の気体に働く重力(下向き)です。
これらの力のつり合い(気球が浮かび上がる瞬間にはまだ力のつり合いが成立しています)より、
⑥より、
......[]

() 気球内の気体の体積Vになったとき(気球の下部が開いているので、圧力のまま)、気体の物質量をn[mol]だとして、
気体の状態方程式
......[]

() この間、気球の下部が開いているので、気球内の気体は定圧変化をします。定圧モル比熱マイヤーの関係式より、
定圧モル比熱の式より、気体に加えられたは、
......[]

() 内部エネルギーの増加は、
......[]

(3)() 気球の体積Vのままなので、気球内の気体の密度のままです。気球が静止したとき、この高度での大気の密度rとして、気球に働くは、浮力(上向き),気体の部分を除いた気球に働く重力(下向き),気球内の気体に働く重力です。
これらの力のつり合いより、
⑥より、
 ・・・⑦
一方気球が静止した高度における大気の温度Tとすれば、⑤と⑦より、
両辺を乗して、
 ・・・⑧
......[]

() 気球の下部を開くと気球内の気体の圧力は、この高度での気体の圧力pになります。気球内の気体の温度とします。また、このとき、気体の体積Vのままなので、定積変化になります。
気球の下部を開く前の気球内の気体の圧力は、気球の下部を地表で閉じたときの圧力のままです。下部を開いても、気球に働く力のつり合いが成立しているので、気球内の気体の量はn[mol]のまま変化しません。気球内の気体について、
下部を開く前の状態方程式 ・・・⑨
下部を開いた後の状態方程式 ・・・⑩
⑩÷⑨より、 ・・・⑪
③を用いて、
⑧を用いて、
......[]

() 題意より、です。
また、気球の固定をはずして気球が飛び上がったということは、
よって、
従って、
()の結果において、より、
......[] (この結果、⑪より、上空に行くほど圧力が小さくなることがわかります)


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2008/07/24(木) 11:09:38|
  2. 京大物理'06年
  3. | トラックバック:0
  4. | コメント:0
<<京大理系数学'05年前期[1] | ホーム | 京大物理'06年前期[2](再掲)>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/506-67cad456
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。