FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

東大理系数学'05年前期[4](再掲)

東大理系数学'05年前期[4]

3以上9999以下の奇数aで、10000で割り切れるものをすべて求めよ。

解答 東大では頻出の整数問題です。整数を参照してください。

まず、
kを自然数だとして、とおいてみます。
これを
a2次方程式とみて解くと、
ここで根号が開ける、つまり、根号内が平方数である条件を考えればよいのですが、
などと置いてもちょっと展望はないですね。
9999に近いのですが、のとき、となりますが、
で割っても、
これでは、kとして調べる範囲が広すぎます。
よって、この方針はボツ。

なので、とか、とかして、2次方程式を解く方針も考えられますが、先の方針と似たり寄ったりでしょうね。

次に、
と因数分解してみます。
これで、
1つ気がつかないといけないことがあります。
aは連続している2整数です。片方が奇数で、もう一方は偶数です。
とるに足らないような当たり前のことですが、こういうことが整数の問題では非常に役立つときがあります。
10000を素因数分解して出てくるは偶数です。は奇数です。
ということは、次の
2つの場合しかあり得ないということです。
(i) の倍数でaの倍数
(ii) の倍数でaの倍数
これ以外の場合(たとえば、片方がの倍数で、他方がの倍数になるような場合には、2数がともに偶数になってしまいます)はあり得ません。

(i)の場合、kを整数として、とおくと、lを整数として、
とおけます。つまり、
この左辺は偶数なので、は奇数です。lも奇数です。
より、8通りに限られます。
この程度なら全数チェックしてもよいでしょう。
と書ける数の中から16の倍数になるものを探します。
の各々について、
となりますが、
このうち、16の倍数は、に対応する624だけです。
のとき、です。
原問題のままなら、aが奇数になるのは(i)の場合だけなので、 ......[]

ここでは、aが偶数の場合も調べておきます。

(ii)の場合、kを整数として、とおくと、lを整数として、
とおけます。
は偶数なので、は奇数となり、kも奇数です。
より、8通りに限られます。
と書ける数の中から16の倍数になるものを探します。
の各々について、

このうち、16の倍数は、に対する9376だけです。
よって、

この問題では、,つまりの下4桁がaに一致していると言っているわけですが、実際、となります。

小学生の家庭教師のアルバイトをやっていて、かけ算の練習をさせるとき、
何でもよいから、
3桁の数を考えてごらん、と言って、
小学生が、例えば、
293を考えたとします。
まず、
7をかけてみてね、と、言います。
となります。
次に、今出てきた答に
11をかけてみてね、と、言います。
となります。
さらに、今出てきた答に
13をかけてみてね、と、言います。
となります。
はじめに考えた数と比べてごらん、と言うと、小学生が計算間違いをしていなければ、
目を丸くします。
なぜだろうね?と言って理由を考えさせるのもよいかもしれません。
ほかにも
3桁の数を考えさせて、計算を何回かやらせるうちに、71113にトリックがあるな、ということに気づかせることができるでしょう。
要するに、
だからなのですが、こんなことからでも、小学生に数の不思議さを体験させて科学への興味を持たせることができれば素敵だと思いませんか?

原問題が
aを奇数の場合に限っているのは、(i)(ii)も結局同じことを2度やるだけなので、無駄かなと出題者が思ったからだと思いますが、(ii)の手間を省略したければ、
mの倍数であって、nを整数として、と書けるとき、
とすると、
  より、
mの倍数です。この問題でaが偶数でよいことにすると、が答なら、も答です。


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2008/04/12(土) 11:38:40|
  2. 東大数学'05年
  3. | トラックバック:0
  4. | コメント:0
<<東大理系数学'05年前期[5] | ホーム | 東大理系数学'05年前期[3](再掲)>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/426-c1dd6500
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。