FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

東大理系数学'05年前期[3](再掲)

東大理系数学'05年前期[3] 東大理系数学'05年前期[3]

とする。ただし、eは自然対数の底である。
(1) ならばであることを示せ。
(2) を正の数とするとき、数列 ()を、によって定める。であれば、
であることを示せ。

解答 この問題は京大'84[6]をはじめとして、あちこちの大学で出題されてきている問題です。東大でも、毎年1題か2題、入試頻出技巧を使う問題が出題されています。

(1) 1次の導関数は、 (合成関数の微分法を参照)
2次の導関数は、
におけるの増減表は、
x 1
0
0()

増減表より、において、
また、単調増加関数

(2) 原問題で特に聞かれているわけではないのですが、定型問題なので、ふつうこうやる、という筋道でやっていきます。
という方程式を考えます。(1)という条件をつけているので、ここでも、の範囲の解を考えます。ここで、
という関数を考えます。

の増減表は、
x 1
0
()

増減表より、において、,従って、単調減少関数です。
より、,即ち、は、において、ただ1つの解を持ちます。

・まず、の場合を考えます。

は単調増加でなので、
以下、同様にして、,・・・・・・
となり、全ての自然数nについて、です。

また、単調増加関数だから、より、
,・・・・・・
となり、全ての自然数nについて、です。

は、において微分可能な関数なので、
平均値の定理より、の場合にはの場合には、として、
となるcが存在します。どちらの場合においても、なので、(1)の結果より、

よって、
この不等式で項の番号を1ずつ小さくしてゆくと、
,・・・,
これらを使って、

ここで、とすると、右辺
はさみうちの原理より、

の場合には、,・・・・・・
より、全ての0以上の整数nについて、

以上より、 ......[]


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2008/04/08(火) 11:52:38|
  2. 東大数学'05年
  3. | トラックバック:0
  4. | コメント:0
<<東大理系数学'05年前期[4](再掲) | ホーム | 東大理系数学'05年前期[2](再掲)>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/425-1bce6aae
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。