FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

東大理系数学'08年前期[6](再掲)

東大理系数学'06年前期[6]

を定義域とする関数について、以下の問いに答えよ。
(1) 関数 ()は、実数全体を定義域とする逆関数を持つことを示せ。すなわち、任意の実数aに対して、となるがただ1つ存在することを示せ。
(2) 前問(1)で定められた逆関数を ()とする。このとき、定積分を求めよ。

解答 逆関数と言っても、元の関数とグラフのx軸,y軸が逆になるというだけなので、怖がらないようにしましょう。

(1)  (商の微分法を参照)
分子
よって、 ()
よって、において、単調増加な関数です。
の分子はのときですが、の分母はとするとき、正の数として0に近づくので、
また、のとき、より、
以上より、任意の実数aに対して、となるがただ1つ存在し、は実数全体を定義域とする逆関数をもちます。

(2) 逆関数のグラフは、のグラフと直線に関して対称で、のグラフのx軸とy軸を逆にしたものと考えることができます。
のとき、という関係があります。
求める定積分は、のグラフのの部分とx軸との間に挟まれた部分の面積です(定積分と面積を参照)
となるについて、が成り立ちます。の定義域がであることから、であることに注意してください。
(
より)とおいて、
分母を払って整理すると、

このうち、に適するものは、
(より)とおいて、
分母を払って整理すると、

このうち、に適するものは、
以上より、求める定積分は、のグラフのの部分とy軸との間に挟まれた部分(右図斜線部)の面積に相当します。
この面積は、原点O4点を頂点とする長方形の面積から、原点O4点を頂点とする長方形の面積と、のグラフのの部分とx軸の間に挟まれた部分の面積を除いた面積に相当します。よって、
の積分について(置換積分法を参照)は、とおくと、より、
xのとき、t
 (分数関数の積分を参照)



......[]


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2008/03/24(月) 14:21:51|
  2. 東大数学'06年
  3. | トラックバック:0
  4. | コメント:0
<<東大物理'06年前期[1](再掲) | ホーム | 東大理系数学'06年前期[5](再掲)>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/419-6466bcb3
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。