FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

京大物理'08年前期[3]

京大物理'08年前期[3]

次の文を読んで、  には適した式または数値を、{  }には図3から適切なものを選びその番号を、それぞれの解答欄に記入せよ。また、問1,問2では指示にしたがって、解答をそれぞれの解答欄に記入せよ。

電磁波の一種であるγ線の放射と測定について考察しよう。物質を構成する原子は電子と原子核からなり、原子核の内部のエネルギーが高い状態から低い状態に移るときに、原子核からγ線が放射される。以下では、電子の質量は原子核の質量と比較して非常に小さいため、無視できるものとする。
振動数
fの電磁波は、ある一定のエネルギーをもった粒子の集まりと考えることができ、その粒子を光子という。光子1個のエネルギーは,運動量は電磁波の進む向きにの大きさであることがわかっている。ここで、hはプランク定数とよばれる定数であり、cは光速である。
以下において、原子核の内部のエネルギー状態には、励起状態とよばれるエネルギーの高い状態と基底状態とよばれるエネルギーの最も低い状態の
2つがあるものとする。励起状態のエネルギーを,基底状態のエネルギーをとし、そのエネルギー差をとする。
まず、質量Mの原子核1個によるγ線放射を考える。原子核が励起状態から基底状態に移るときに、γ線の光子が1個放射される。静止していた原子核は、図1のようにγ線放射の反作用により速さvで動き出す。速さvの原子核の運動エネルギーと運動量の大きさは、原子核が基底状態にあるか励起状態にあるかに関わりなく、それぞれとしてよい。また、原子核の全エネルギーは内部のエネルギー(または)と原子核の運動エネルギーの和で与えられる。よって原子核から振動数のγ線が放射される場合、エネルギー保存則はを用いて あ ,運動量保存則は い と書くことができる。ここで、に比べ充分に小さいことがわかっている。絶対値が1より充分に小さい数d に対して成り立つ近似式を用いると、Mchを用いて う となる。
次に、この原子核をもつ原子
N個で構成されている静止した結晶からのγ線光子1個の放射を考える。この結晶の質量はで与えられる。以下では、結晶は充分低温であるものとし、原子核が結晶中に固定され、γ線を放射する原子核はその反作用を受けても結晶中に固定されたままであるとする。この場合、γ線放射の反作用は結晶全体で受け止められ、結晶が速さで動き出すものとする。このときの放射γ線の振動数MNchを用いて え となる。また、構成する原子数が無限大とみなせる大きい結晶の場合、放射されるγ線の振動数はとなる。

1 原子N個で構成されている静止した結晶からのγ線光子1個の放射について、エネルギー保存則と運動量保存則を記述せよ。さらにNが無限大とみなせるとき、エネルギー保存則において結晶の運動エネルギーの項がその他の項に比べて無視でき、その結果、放射γ線の振動数がとなることを説明せよ。

同様の考察により、同じ種類の原子で構成されている静止した大きい結晶にγ線を当てると、この結晶は振動数のγ線のみをよく吸収することがわかっている。このような結晶をここでは吸収体とよぶ。

次に、図2のような実験装置を用いたγ線の測定を考えよう。
γ線源は同じ種類の
N個の原子で構成された結晶多数からなり、振動数のγ線を一定の強度(単位時間当たりに放射されるγ線の光子数)で放射するものとする。吸収体を乗せた台車を水平な床の上におき、図2のように左端を床に固定したばねにつなぐ。γ線源は台車から充分に遠方に置かれ、γ線は吸収体付近で図2x軸に平行に進むものとする。吸収体の表面はx軸に垂直である。吸収体は、振動数以外の振動数のγ線を通過させるが、振動数のγ線を完全に吸収するものとする。吸収体の後方の床上にγ線強度測定器を設置する。吸収体からのγ線放射は無視できるものとする。
ばねを自然の長さのときの位置
OからAだけ伸ばして、時刻に静かに放すと、台車はx軸に平行に角振動数wで単振動する。以下では、吸収体の運動により、吸収体中で観測されるγ線の振動数は音波のドップラー効果と同じ変化をするものとする。なお、吸収体の屈折率によるγ線の速度の変化は無視できるものとする。この場合、γ線の波長をlとすると、吸収体が速さVで運動しているときは、静止しているときに比べ、単位時間当たりに吸収体に到達する波の数がだけ変化する。よって、時刻tにおいての関係がある。(lVを用いずに表せ。)
台車が動き始めてから時刻で突然、測定器で測定されるγ線強度が変化した。に一致したからである。絶対値が1より充分小さい数d に対して成り立つ近似式を用いると、の満たす条件は か である。(を用いずに表せ。)
ここで、の原子核のγ線放射において、のときにで測定されるγ線強度が変化したとする。なお、とする。このときのwを有効数字1けたで求めると き rad/sである。また、台車が一周期単振動するとき、想定されるγ線強度との関係は図3{ く }のように予想される。

2 図3{ く }を選択した理由を記述せよ。

解答 光子が出てくるので原子分野の問題のようにも見えますが、光子の定義、光子1個のエネルギー,運動量の大きさが与えられているので、原子分野を履修していなくても解答できます。むしろ、ドップラー効果運動量保存則エネルギー保存則の融合問題と言うべきでしょう。

() 原子核がはじめに持っているエネルギー,γ線放出後、原子核が持っているエネルギー運動エネルギーでγ線光子の持っているエネルギーより、
エネルギー保存則
......[]
() はじめ原子核は静止していたので運動量0,右向き正として、γ線放出後の原子核の運動量,γ線光子の運動量より、
運動量保存則 ......[]
() ()の結果より、
これを()の結果に代入すると、


より、

......[]
() 上記において、とすることにより、
......[]

1 ()()について、MNMvとして、
エネルギー保存則 ・・・(1)
運動量保存則 ・・・(2)
(2)より、
これを(1)に代入すると、
()と同様にすれば、これより、()で、として、
が得られたことが確認できます。ここで、とすると、より、
が得られます。

()吸収体の時刻tにおける位置は、 (単振動を参照)
吸収体の時刻tにおける速度は、
吸収体の速度Vのとき、吸収体中で観測されるγ線の振動数は、γ線のもとの振動数からだけずれます。なら (波源から遠ざかるときは振動数→小)なら (波源に近づくときは振動数→大)に注意して、
両辺をで割り、を用いると、
 (ドップラー効果の公式を使えばすぐにこう書けます)
......[]
() ()の結果で、とおくと、
()の結果で、として、
 (3)
は微小量なので、
(3)に代入し、

......[]
() ()の結果に数値代入すると、
これより、
0.6 ......[]
() を満たすのは、においては、のときです。
このとき、吸収体でγ線が完全に吸収されてしまうので、γ線強度測定器で観測されるγ線強度は0です。これ以外の時には、γ線は吸収体を通過してγ線強度測定器に到達するので、一定量のγ線が観測されます。
......[]

2 γ線は、のとき吸収体に完全に吸収され、それ以外のときにはγ線強度測定器に到達するから ......[]


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005, 2006,2007, 2008 (有)りるらるNewton e-Learning
 雑誌「大学への数学」購入
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2008/03/20(木) 03:43:33|
  2. 京大物理'08年
  3. | トラックバック:0
  4. | コメント:0
<<東大理系数学'07年前期[1](再掲) | ホーム | 京大物理'08年前期[2]>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/404-532a62d5
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。