FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

行列

行列

いくつかの数を長方形状に並べたものを行列と言う。
横の並びを1組にして、縦の並びを1組にしてと言う。
行列があるとき、
を第1行,を第2行,を第i行と言う。
を第1列,を第2列,を第j列と言う。
を行列の成分、成分、成分(i行目のj列目)と言う。
行の数m、列の数nの行列を、mn列の行列m×n行列'と言う。
とくに、nn列の行列をn正方行列と言う。
n次正方行列の(行の番号と列の番号が同じ成分)を行列A対角成分と言う。
n次正方行列の対角成分が全て1,他は全て0になる行列n単位行列と言う。
成分が全て0の行列を零行列と言い、O (大文字のオー)で表す。
行列Aの第i行を第i列にしてできる行列(行と列を入れ替えた行列)
A転置行列という。
1行のみの行列を行ベクトル、1列のみの行列を列ベクトルと言う。
行列を、行ベクトルを縦に並べたもの、列ベクトルを横に並べたものとして扱うことがある。
このウェブサイトでは、行列を扱うとき、単にベクトルと呼ぶときは縦ベクトル(縦に数字を並べたベクトル)を表すものとする。
また、縦ベクトルを横ベクトルに直すときには転置記号を使うことにする。つまり、
とするとき、と書くことにする。
,・・・,とすれば、のように表せる。
,・・・,とすれば、のように表せる。つまり、行ベクトルを、その行の成分を一旦縦ベクトルの形に書いて転置したものとして考える。


1(1) 23列の行列。31列の行列(または3次元列ベクトル)
(2) 2次の正方行列,2次の単位行列。
(3) 3次の正方行列,3次の単位行列。

2. 


行列の和と差:として、
  (複号同順)
行列の実数倍(スカラー倍)


A成分をB成分をとして()
(すべてのijに対して)
成分は、 (同一成分どうしで和と差をとればよい)
成分は、 (全ての成分に実数cをかける)

3. として、
かつ かつ かつ

4.  (零行列)

2つの同型の行列ABの和について、
交換法則:
結合法則:
が成立する。また、


行列の実数倍について、
(p:実数)
pqを実数,ABを同型の行列として、



TOPに戻る   CFV21 メイン・ページ   考察のぺージ   作者のページ

(C)2005, 2006 (有)りるらるNewton e-Learning
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2006/10/08(日) 10:42:05|
  2. 未分類
  3. | トラックバック:0
  4. | コメント:0
<<行列の積 | ホーム | 積分法>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/183-0454cd3d
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。