FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

京大理系数学'13年[3]

京大理系数学'13[3]

nを自然数とし、整式を整式で割った余りをとする。このときabは整数であり、さらにそれらをともに割り切る素数は存在しないことを示せ。

解答 ちょっと見た目には難問か?という感じがしないでもないですが、やってみると易問です。以前の重厚な京大数学の面影は微塵もありません。

整式を整式で割ると、
2次式で割るので、余りは1次式です。商を,余りをとします(多項式の除算を参照)
ここでは、2次方程式の解 (とおきます)を代入してみるのが定石です。

より、
こうして、本問は、2次方程式を利用した次数下げの問題に帰着します。
以下、
数学的帰納法により証明します。
() のとき、より、です。ともに整数で、10をともに割り切る素数は存在しないので、題意は成立します。
() のとき、とおけて、がともに整数であり、かつ、をともに割り切る素数は存在しないと仮定(これは、数学的帰納法の仮定です)します。
 ( )
従って、を、
 ・・・①
となるように決めれば、とおくことができます。
また、①より、は整数です。ここで、をともに割り切るような素数
pが存在すると仮定(これは、背理法の仮定です)すると、 (mは整数)とおくことができます。①より、

もともに素数pで割り切れることになり、数学的帰納法の仮定に反します。よって、「をともに割り切るような素数pが存在する」とした仮定は誤りで、をともに割り切るような素数pは存在しません。
()()より、nを自然数として、整式を整式で割った余りをとすると、abは整数であり、さらにそれらをともに割り切る素数は存在しません。


TOPに戻る   CFV21 アーカイブ   考察のぺージ

©2005-2013
(有)りるらる
CFV21 随時入会受付中!
理系大学受験ネット塾CFV21(ご案内はこちら)ご入会は、
まず、こちらまでメールをお送りください。
 雑誌「大学への数学」出版元
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2013/05/30(木) 01:00:05|
  2. 京大理系数学'13年
  3. | トラックバック:0
  4. | コメント:0
<<京大理系数学'13年[4] | ホーム | 京大理系数学'13年[2]>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/1420-fb7b8162
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。