FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

東工大数学'13年前期[3]

東工大数学'13前期[3]

kを定数とするとき、方程式の異なる正の解の個数を求めよ。

解答 試験場で熱くなってしまうと気づきにくいですが、とおくと、です。とりあえず、関数の雰囲気をつかむためにも、簡単な数値を代入してみる、という心がけが大切だということでしょう。

 (微分の公式を参照)
となりますが、これ以外にとなるxがあるかどうか調べます。
とすると、
両辺の対数
(底:e)をとり、
 ・・・①
のとき、①は成立し、 ・・・②
においては、①より、


とおきます。を満たすx以外にあるかどうか調べます。
ここでとしてみても埒があかないので、この分子を
とおいて、さらに調べます。
とすると、
においてより減少,においてより増加
(関数の増減を参照),よって、
よって、において
これより、は、において増加関数で、
(極限の公式を参照)
ですが、これ以外に、となる
xはありません。
において
において
において
以上より、の増減表は以下のようになります。

x0
1
e

00
10
増減表より、の正の解の個数は、のとき0個,のとき1個,のとき2個,のとき3 ......[]


TOPに戻る   CFV21 アーカイブ   考察のぺージ

©2005-2013
(有)りるらる
CFV21 随時入会受付中!
理系大学受験ネット塾CFV21(ご案内はこちら)ご入会は、
まず、こちらまでメールをお送りください。
 雑誌「大学への数学」出版元
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2013/03/20(水) 01:35:04|
  2. 東工大数学'13年
  3. | トラックバック:0
  4. | コメント:0
<<東工大数学'13年前期[4] | ホーム | 東工大数学'13年前期[2]>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/1409-8b0bd08b
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。