FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

東工大数学'13年前期[1]

東工大数学'13前期[1]

(1) 2次方程式2つの解αβ に対し、はすべての正の整数nについて5の整数倍になることを示せ。
(2) 6個のさいころを同時に投げるとき、ちょうど4種類の目が出る確率を規約分数で表せ。

解答 (1)は類題が'86[1]にあります。(2)は難しくないですが、丁寧に場合の数を調べる必要があります。

(1) 2次方程式の解と係数の関係より、 ・・・①
のとき、①より、,これは5整数倍であって、与えられた命題は成り立ちます。
のとき、①より、
これは5の整数倍であって、与えられた命題は成り立ちます。
のとき、5の整数倍であると仮定します。pqを整数として、
 ・・・②
とおけます。①,②を利用して、

5の整数倍であって、のときにも与えられた命題は成り立ちます。
以上より、数学的帰納法により、すべての正の整数nについて5の整数倍になります。
別解.3項間漸化式の特性方程式がになることを利用すれば、3項間漸化式を考えることもできます。
とおくと、


 ( )
5の整数倍で、pqを整数として、であれば、
5の倍数です。

(2) 6個のさいころを投げるとき、各々の目の出方は、通りあります。
ちょうど4種類の目が出るのは、(i) 6個のうち3個が同じ目で、他の3個が互いに異なり、かつ、同じ目の3個とも異なる。か、(ii) 6個のうち2個が同じ目で、2個がこれとは異なる同じ目で、他の2個がこの2種の目と異なり、かつ、互いに異なる目になる。場合です。
(i)のとき、4種類の目の選び方が通り。6個のうち同じ目になる3個の選び方が通り。4種類の目の並び方が、通り。通りあります。
(ii)のとき、4種類の目の選び方が15通り。6個のうち同じ目になる2組の2個のさいころの選び方が、通り(2組は区別できない)4種類の目の並び方が24通り。通りあります。
求める確率は、
......[]


TOPに戻る   CFV21 アーカイブ   考察のぺージ

©2005-2013
(有)りるらる
CFV21 随時入会受付中!
理系大学受験ネット塾CFV21(ご案内はこちら)ご入会は、
まず、こちらまでメールをお送りください。
 雑誌「大学への数学」出版元
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2013/03/13(水) 23:58:45|
  2. 東工大数学'13年
  3. | トラックバック:0
  4. | コメント:0
<<東工大数学'13年前期[2] | ホーム | 東大理系数学'13年前期[6]>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/1407-d19446e1
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。