FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
  1. --/--/--(--) --:--:--|
  2. スポンサー広告

東大理系数学'13年前期[2]

東大理系数学'13年前期[2]

aを実数とし、で定義された関数を次のように定める。

このときのグラフとのグラフがにおいて共有点をちょうど3つ持つようなaをすべて求めよ。

解答 のグラフを追求していくと行き詰まります。文字定数は分離する(微分法の方程式への応用(2)を参照)、という定石であっさり解決します。

のグラフとのグラフの共有点の
x座標は、方程式の解です。

なので、両辺をxで割ると、
この解は、を連立したときの解です。
とおくと、
 (商の微分法を参照)
とすると、においては、より ()

x0に近いところでの増減表は以下のようになります(関数の増減を参照)
x0




×0000
×
であり、の極値について、の場合は、となるので、増減表より、のグラフとのグラフがにおいて共有点をちょうど3つ持つaは、
.......[]


TOPに戻る   CFV21 アーカイブ   考察のぺージ

©2005-2011
(有)りるらる
CFV21 随時入会受付中!
理系大学受験ネット塾CFV21(ご案内はこちら)ご入会は、
まず、こちらまでメールをお送りください。
 雑誌「大学への数学」出版元
スポンサーサイト

テーマ:大学受験 - ジャンル:学校・教育

  1. 2013/03/07(木) 13:20:33|
  2. 東大数学13年
  3. | トラックバック:0
  4. | コメント:0
<<東大理系数学'13年前期[3] | ホーム | 東大理系数学'13年前期[1]>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/1402-a6e727ea
この記事にトラックバックする(FC2ブログユーザー)
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。