FC2ブログ

CHALLENGE from the VOID

大学入試問題を考える - 数学・物理 -

CFV21 ご入会のおすすめ
理工系受験生の方は
こちらをご覧ください
当会の活動にご支援頂ける方は
こちらをご覧ください

センター試験「数学」の必勝法はこちら
センター試験「物理」の必勝法はこちら

理工系受験生必見!! 2010-2007入試問題検討ページ(東大・東工大・京大・早慶) 
CFV21での学習の進め方

東大理系数学'10年前期[4]検討

東大理系数学'10年前期[4]検討

[4](解答はこちら) 本問は、という形の積分計算に関する技巧を背景とした問題です。
本年早大理工[4]では、とおいて、
より、
 (C:積分定数)
として積分を行っていますが、大学入試では、を利用して、以下のように部分積分を促す誘導をよく見かけます。


 (C:積分定数)
ですが、もう一つ、という置換積分をする方法が知られています。
より、
 (C:積分定数)
であれば簡単ですが、の場合は少々工夫をして、
より、
となるので、
 (ここがみそです)




として、図形的意味を確認しながら積分計算をしているのが本問です。

さて、頭を悩ます難問が続出の東大理系でも、いわゆる受験技巧を駆使するような問題が毎年
12題出題されています。2010年度では、本問がそうした問題に当たります。解答の(2)では、技巧に走らず素直な考え方でやってありますが、うまくやるのであれば、以下のような、逆関数を考える解法の方が容易に面積を求めることができます。
解答の図で、の交点を
Qとすると、(1)より、なので、より、
 ・・・①
曲線Cの範囲にある部分をとします。
問題となっている面積、つまり、と線分とで囲まれる図形の面積
Sは、と線分で囲まれる部分の面積をとして、①より、
となり、と直線,線分に囲まれた部分の面積に等しくなります。よって、曲線Cを与える関数を,この逆関数をとして、面積Sは、y方向の定積分:
で与えられます。解答中の⑤式:を利用すれば、より、
となります。

解答で書いた、
x方向の定積分のままで置換積分を行う考え方は、やや趣を異にしますが、円筒分割によるy軸の回りの回転体の公式の証明などに出てくる考え方と共通のものです。
例えば、東大
89[5]

とする。のグラフのの部分と
x軸とで囲まれた図形をy軸のまわりに回転させてできる立体の体積Vは、で与えられることを示し、この値を求めよ。

解答 たくさんの円筒に分割して積分することを図形的に説明することも可能ですが、ここでは、計算でやってみます。
においてから一旦増加して
()で極大値をとりまで減少する関数です。増加関数の部分の逆関数を,減少関数の部分の逆関数をとすると、
に対して、のときのときです。
各定義域において,また、に注意してください。

y軸の回りの回転体の体積なので、普通は外側から内側を引き、y方向に積分して、
とするわけですが、この問題で与えられているでは逆関数が求められないので、と置換して積分を行います。
より、
の積分では、yのとき、x
の積分では、
yのとき、x
ここで部分積分法を用いて、
となります。この結果を利用して、
とおくと、
xのとき、t
......[]


TOPに戻る   CFV21 メイン・ページ   考察のぺージ

(C)2005,2006,2007,2008,2009
(有)りるらる
CFV21 随時入会受付中!
CFV21ご入会は、まず、
こちらまでメールをお送りください。
 雑誌「大学への数学」購入
スポンサーサイト



テーマ:大学受験 - ジャンル:学校・教育

  1. 2010/05/03(月) 23:14:11|
  2. 東大数学'10年
  3. | トラックバック:0
  4. | コメント:0
<<東大理系数学'10年前期[5]検討 | ホーム | 東大理系数学'10年前期[3]検討>>

コメント

コメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://cfv21.blog49.fc2.com/tb.php/1058-b7c35e7b
この記事にトラックバックする(FC2ブログユーザー)